dp code but unable to decode decode latter
#include <bits/stdc++.h>
using namespace std;
int w[100],t[100],dp[303];
int main(){
int n,i,j,sum=0;cin>>n;
for(i=0;i<n;++i)
cin>>t[i]>>w[i],sum+=t[i];
for(i=0;i<n;++i)
for(j=sum;j>=t[i]+w[i];--j)
dp[j]= max(dp[j],dp[j-t[i]-w[i]]+t[i]);
cout<<sum-dp[sum]<<endl;
}
-------------------------------------------------gready-----------------------------------------------------------------
As said in the statement, the thickness of each book is either 1 or 2. Think about when we want to arrange v1 books of thickness 1 andv2 books of thickness 2 vertically and arrange all other n - v1 - v2 books horizontally above them to achieve a configuration with total thickness of vertical books equal to v1 + 2v2. Is it possible to find such arrangement? Because the total thickness of vertical books is fixed it's good to calculate the minimum possible total width of horizontal books. As the width of a book doesn't matter in vertical arrangement it's good to use the books with shorter width horizontally and the ones with longer width vertically. So pick out v1 books with longest width among books of thickness 1 and do the same with books of thickness 2. The sum of width of n - v1 - v2 remaining books should be at most v1 + 2v2.
The solution would be to try the things we explained above for all possible values of v1 and v2. And print the best answer. :)
There exists other ways to solve this problem mostly using dynamic programming but this was the intended solution of the problem.
Here is a nice implementation in C++ from contestant Bayram: 3485189 (You should also know that 'bir' means 'one' in Turkish and 'iki' means two!)
now think dp approach since if width will not be 1 , 2 that it will be quit tough by this approach
-----------------------------------------------------code---------------------------------------------------------------
#include<bits/stdc++.h>
using namespace std;
int main()
{
int ans=0;
int n;
cin>>n;
int p=0,q=0;
int sum=0;
int o[109],t[109];
for(int i=0;i<n;i++)
{
int a,b;
cin>>a>>b;
if(a==1) o[p++]=b;
else t[q++]=b;
sum+=b;
}
sort(o,o+p);
sort(t,t+q);
//for(int i=0;i<p;i++)cout<<o[i]<<" ";cout<<endl;
// for(int j=0;j<q;j++) cout<<t[j]<<" ";
int st1=p-1;
int st2=q-1;
int base=0;
while(st1>=0 && st2>=0)
{
// cout<<"sts "<<st1<<" "<<st2<<"sum "<<sum<<endl;
if(sum-o[st1]<=base+1)
{
cout<<base+1<<endl;
return 0;
}
else if(st1>=1 && sum-o[st1]-o[st1-1]<=base+2)
{
cout<<base+2<<endl;
return 0;
}
else if(sum-t[st2]<=base+2)
{
cout<<base+2<<endl;
return 0;
}
else if(sum-t[st2]-o[st1]<=base+3)
{
cout<<base+3<<endl;
return 0;
}
else
{
int bb=0;
// cout<<st1<<" "<<st2<<endl;
int max1=o[st1];
bb=1;
// cout<<"a "<<max1<<endl;
if(st1>=1)
{
max1+=o[st1-1];bb++;
}
//cout<<"b "<<max1<<endl;
int max2=t[st2];
// cout<<"maxi1 "<<max1<<" max2 "<<max2<<endl;
if(max1>max2)
{
base+=bb;
st1-=2;
sum-=max1;
// base+=2;
}
else
{
st2-=1;
sum-=max2;
base+=2;
}
}
// cout<<"sts "<<st1<<" "<<st2<<" base "<<base<<" sum "<<sum<<endl;
}
if(st1<0)
{
while(st2>=0)
{
sum-=t[st2];
base+=2;
if(base>=sum)
{
cout<<base<<endl;
return 0;
}
st2-=1;
}
}
if(st2<0)
{
while(st1>=0)
{
sum-=o[st1];
base+=1;
if(base>=sum)
{
cout<<base<<endl;
return 0;
}
st2-=1;
}
}
}
No comments:
Post a Comment